Схемы тиристорных регуляторов мощности

Чтобы пайка была красивой и качественной, необходимо правильно выбрать мощность паяльника, обеспечить температуру жала. Все это зависит от марки припоя. На ваш выбор предоставляю несколько схем тиристорных регуляторов регулирования температуры паяльника, которые можно изготовить в домашних условиях. Они просты легко заменят промышленные аналоги, к тому же цена и сложность будет отличаться. Электрические принципиальные схемы регуляторов […]

Эта статья - Схемы тиристорных регуляторов мощности размещена на сайте Строительный информационный портал «ПроТерем».

Чтобы пайка была красивой и качественной, необходимо правильно выбрать мощность паяльника, обеспечить температуру жала. Все это зависит от марки припоя. На ваш выбор предоставляю несколько схем тиристорных регуляторов регулирования температуры паяльника, которые можно изготовить в домашних условиях. Они просты легко заменят промышленные аналоги, к тому же цена и сложность будет отличаться.

Электрические принципиальные схемы регуляторов температуры паяльника

Осторожно! Прикосновение к элементам тиристорной схемы может привести к получению травмы опасной для жизни!

Чтоб регулировать температуру жала паяльника используются паяльные станции, которые в автоматическом и ручном режимах поддерживает заданную температуру. Доступность паяльной станции ограничивается размером кошелька. Я решил эту проблему, изготовив ручной регулятор температура, имеющий плавную регулировку. Схема легко дорабатывается до автоматического поддержания заданного режима температуры. Но я сделал вывод, что ручной регулировки достаточно, так как температура помещения и ток сети стабильны.

Классическая тиристорная схема регулятора

Классическая схема регулятора была плоха тем, что имела излучающие помехи, издаваемые в эфир и сеть. Радиолюбителям эти помехи мешают при работе. Если доработать схему, включив в нее фильтр, размеры конструкции значительно увеличатся. Но это схема может использоваться и в других случаях, например, если необходимо отрегулировать яркость ламп накаливания или нагревательных приборов, мощность которых 20-60 Вт. Поэтому я представляю эту схему.

Чтобы понять, как это работает, рассмотрим принцип работы тиристора. Тиристор представляет собой полупроводниковый прибор закрытого или открытого типа. Чтоб открыть его, на управляющий электрод подается напряжение равное 2-5 В. Оно зависит от выбранного тиристора, относительно катода (буква k на схеме). Тиристор открылся, между катодом и анодом образовалось напряжение равное нулю. Через электрод его невозможно закрыть. Он будет открыт до того времени, пока значение напряжения катода (k) и анода (a) не будет близко к нулю. Вот такой принцип. Схема работает следующим образом: через нагрузку (обмотка паяльника или лампа накаливания) подается напряжение на диодный мост выпрямителя, выполненный диодами VD1-VD4. Он служит для преобразования переменного тока в постоянный, который меняется по синусоидальному закону (1 диаграмма). В крайнем левом положении сопротивление среднего вывода резистора равно 0. При увеличении напряжения происходит зарядка конденсатора С1. Когда напряжение С1 будет равно 2-5 В, на VS1 пойдет ток через R2. При этом произойдет открытие тиристора, закорачивание диодного моста, максимальный ток пройдет через нагрузку (диаграмма сверху). Если повернуть ручку резистора R1, произойдет увеличение сопротивления, конденсатор С1 будет заряжаться дольше. Следовательно, открытие резистора произойдет не сразу. Чем мощнее R1, тем больше времени уйдет на заряд С1. Вращая ручку вправо или влево, можно регулировать температуру нагрева жала паяльника.

На фото выше предоставлена схема регулятора, собранная на тиристоре КУ202Н. Чтоб управлять этим тиристором (в паспорте указан ток 100мА, реально – 20 мА), необходимо уменьшить номиналы резисторов R1, R2, R3 исключаем, емкость конденсатора увеличиваем. Емкость С1 необходимо повысить до 20 мкФ.

Простейшая тиристорная схема регулятора

Вот еще один вариант схемы, только упрощенный, деталей минимум. 4 диода заменены одним VD1. Отличие данной схемы заключается в том, что регулировка происходит при положительном периоде сети. Отрицательный период, проходя через диод VD1, остается без изменений, мощность можно регулировать от 50% до 100%. Если исключить VD1 из схемы, мощность можно будет регулировать в диапазоне от 0% до 50%.

Если применить динистор КН102А в разрыв от R1 и R2, придется заменить С1 на конденсатор емкостью 0,1 мкФ. Для этой схемы подойдут такие номиналы тиристоров: КУ201Л (К), КУ202К (Н,М,Л), КУ103В, напряжением для них более 300 В. Диоды любые, обратное напряжение которых не меньше, чем 300 В.

Выше упомянутые схемы успешно подойдут для регулировки ламп накаливания в светильниках. Регулировать светодиодные и энергосберегающие лампы не удастся, так как они имеют электронные схемы управления. Это приведет к миганию или работе лампы на полную мощность, что в конечном итоге выведет ее из строя.

Если вы хотите применить регуляторы для работы в сети 24,36 В, придется уменьшить номиналы резисторов и заменить тиристор на соответствующий. Если мощность паяльника 40 Вт, напряжение сети 36 В, он будет потреблять 1,1 А.

Тиристорная схема регулятора не излучающая помехи

Эта схема отличается от предыдущей полным отсутствием изучаемых радиопомех, так как процессы протекают в тот момент, когда напряжение сети равно 0. Приступая к созданию регулятора, я исходил из следующих соображений: комплектующие должны иметь низкую цену, высокую надежность, малые габариты, сама схема должна быть проста, легко повторяемая, КПД должен быть близким к 100%, помехи должны отсутствовать. Схема должна иметь возможность модернизации.

Принцип работы схемы следующий. VD1-VD4 выпрямляют напряжение сети. Получающееся постоянное напряжение изменяется по амплитуде равной половине синусоиды частотой 100 Гц (1 диаграмма). Ток, проходя через R1 на VD6 — стабилитрон, 9В (2 диаграмма), имеет другую форму. Через VD5 импульсы заряжают С1, создавая 9 В напряжения для микросхем DD1, DD2. Для защиты применяется R2. Он служит для ограничения напряжения, поступаемого на VD5, VD6 до 22 В и формирует тактовый импульс для работы схемы. R1 передает сигнал на 5, 6 вывод элемента 2 либо не логическую цифровую микросхему DD1.1, которая в свою очередь инвертирует сигнал и преобразует его в короткий прямоугольный импульс (3 диаграмма). Импульс исходит с 4-го вывода DD1 и приходит на вывод D №8 триггера DD2.1, который работает в RS режиме. Принцип работы DD2.1 такой же и, как и DD1.1 (4 диаграмма). Рассмотрев диаграммы №2 и 4, можно сделать выводы, что отличия практически нет. Получается, что с R1 можно подать сигнал на вывод №5 DD2.1. Но это не так, R1 имеет множество помех. Придется устанавливать фильтр, что не целесообразно. Без двойного формирования схемы стабильной работы не будет.

Схема управления регулятора собрана на базе триггера DD2.2, работает она по следующему принципу. C вывода №13 триггера DD2.1 поступают импульсы на 3 вывод DD2.2, перезапись уровня которых происходит на выводе №1 DD2.2, которые на данном этапе находятся на D входе микросхемы (5 вывод). Противоположный уровень сигнала находится на 2 выводе. Предлагаю рассмотреть принцип работы DD2.2. Предположим, что на 2 выводе, логическая единица. С2 заряжается до необходимого напряжения через R4, R5. Когда появится первый импульс с положительным перепадом на 2 выводе образуется 0, через VD7 произойдет разрядка С2. Последующий перепад на 3 выводе установит на 2 выводе логическую единицу, С2 начнет накапливать емкость через R4, R5. Время зарядки зависит от R5. Чем оно больше, тем дольше будет происходить зарядка С2. Пока конденсатор С2 не накопит 12 емкости, на 5 выводе будет 0. Перепад импульсов на 3 входе не будет влиять на изменение логического уровня на 2 выводе. При достижении полного заряда конденсатора, произойдет повторение процесса. Количество импульсов, заданных резистором R5, будет поступать на DD2.2. Перепад импульсов будет происходить только в те моменты, когда напряжение сети будет переходить через 0. Вот почему отсутствуют помехи на данном регуляторе. С 1 вывода DD2.2 на DD1.2 подаются импульсы. DD1.2 исключает влияние VS1 (тиристор) на DD2.2. R6 установлен для ограничения тока управления VS1. На паяльник подается напряжение за счет открытия тиристора. Это происходит из-за того, что на тиристор поступает положительный потенциал с управляющего электрода VS1. Этот регулятор позволяет производить регулировку мощности в диапазоне 50-99%. Хоть резистор R5 – переменный, за счет включенного DD2.2 регулировка паяльника осуществляется ступенчатым образом. Когда R5 = 0, происходит подача 50% мощности (5 диаграмма), если повернуть на определенный угол, будет 66% (6 диаграмма), затем 75% (7 диаграмма). Чем ближе к рассчитанной мощности паяльника, тем плавне работа регулятора. Допустим, имеется паяльник на 40 Вт, его мощность можно регулировать в районе 20-40 Вт.

Конструкция и детали регулятора температуры

Детали регулятора располагаются на стеклотекстолитовой печатной плате. Плата помещена в пластиковый корпус от бывшего адаптера, имеющего электрическую вилку. Ручка из пластика надета на ось резистора R5. На корпусе регулятора имеются отметки с цифрами, позволяющие понимать, какой температурный режим выбран.

Шнур паяльника припаян к плате. Подключение паяльника к регулятору можно сделать разъемным, чтобы иметь возможность подключить другие объекты. Схема потребляет ток не превышающий 2мА. Это даже меньше, чем потребление светодиода в подсветке выключателя. Специальные меры по обеспечению режим работы устройства не требуются.

При напряжении 300 В и токе 0,5 А применяются микросхемы DD1, DD2 и серии 176 либо 561; диоды любые VD1-VD4. VD5, VD7 — импульсные, любые; VD6 — маломощный стабилитрон с напряжением 9 В. Конденсаторы любые, резисторе тоже. Мощность R1 должна быть 0,5 Вт. Дополнительной настройки регулятора не потребуется. Если детали исправны и при подключении не возникало ошибок, он заработает сразу.

Схема была разработана давно, когда лазерных принтеров и компьютеров не было. По этой причине печатная плата изготавливалась по дедовскому методу, использовалась диаграммная бумага, шаг сетки которой 2,5 мм. Далее чертеж приклеивался «Моментом» на бумагу по плотнее, а сама бумага на фольгированный стеклотекстолит. Зачем сверлились отверстия, дорожки проводников и контактных площадок вычерчивались вручную.

У меня сохранился чертеж регулятора. На фото показан. Изначально применялся диодный мост номиналом КЦ407 (VD1-VD4). Их разрывало пару раз, пришлось заменить 4 диодами типа КД209.

Как снизить уровень помех от тиристорных регуляторов мощности

Чтоб уменьшить помехи, излучаемые тиристорным регулятором, применяют ферритовые фильтры. Они представляют собой ферритовое кольцо, имеющее обмотку. Эти фильтры встречаются в импульсных блоках питания телевизоров, компьютеров и других изделий. Любой тиристорный регулятор можно оснастить фильтром, который будет эффективно подавлять помехи. Для этого необходимо пропустить через ферритовое кольцо сетевой провод.

Ферритовый фильтр следует устанавливать вблизи источников, издающих помехи, непосредственно в месте установки тиристора. Фильтр может быть расположен как снаружи корпуса, так и внутри. Чем больше количество витков, тем качественней фильтр будет подавлять помехи, но и достаточно продеть провод, идущий к розетке, через кольцо.

Кольцо можно изъять из интерфейсных проводов компьютерной периферии, принтеров, мониторов, сканеров. Если посмотреть на провод, который соединяет монитор или принтер с системным блоком, можно заметить цилиндрическое утолщение на нем. Именно в этом месте расположен ферритовый фильтр, служащий для защиты от высокочастотных помех.

Берем нож, разрезаем изоляцию и извлекаем ферритовое кольцо. Наверняка у ваших друзей или у вас завалялся старый интерфейсный кабель од кинескопного монитора или струйного принтера.

Эта статья — Схемы тиристорных регуляторов мощности размещена на сайте Строительный информационный портал «ПроТерем».

Оцените статью
( Пока оценок нет )